学习了一下凸优化DP,感觉挺有意思的
首先把所有点对称到左下角,然后以每个点为顶点画等腰直角三角形,将被覆盖的点去掉,现在所有点从左上到右下横纵坐标都是递增的,设坐标为$(x_{1\cdots M},y_{1\cdots M})$
设$f_{j,i}$表示拍$j$次照片覆盖$i$个点的最少覆盖方格数,枚举最后一个矩形覆盖到之前的哪个点,有$f_{j,i}=\min\limits_{0\leq k\lt i}f_{j-1,k}+\left(y_i-x_{k+1}+1\right)^2-\max\left(y_i-x_{i+1}+1,0\right)^2$,最后减去的是和下一个矩形的重复部分
直接斜率优化可以$O(nk)$,还需要再快一些
凸优化用于解决一类“恰好选$k$个”的问题,在这题中,如果把$f_{j,i}$关于$j$的图像画出来,可以看出它的斜率不减(这我不会证,官方题解上也没讲怎么证,但一般可以通过打差分表猜出结论)
对于常数$C$,设$g_i=\min\limits_jf_{j,i}+jC$,将$f$用转移展开后再回代$g$的定义,我们得到$g_i=\min\limits_{0\leq k\lt i}g_k+\left(y_i-x_{k+1}+1\right)^2-\max\left(y_i-x_{i+1}+1,0\right)^2+C$,可以$O(n)$求
$g_i$是将$\Delta f_{j,i}$平移后取$f$的最小值得到的,所以当$C$增大时使$g$取到最小值的$j$会变小,于是我们可以通过二分找到一个$p$使得当$C=p$时,使$g_M$取得最小值的$j_1\geq k$,当$C=p+1$时,使$g_M$取得最小值的$j_2\leq k$
我们已经得到了$f_{j_1,M},f_{j_2,M}$,现在要求$f_{k,M}\left(k\in[j_2,j_1]\right)$,因为再把$\Delta f_{j,i}$往上平移$1$单位就会让最小值位置偏移,所以$\Delta f_{j_2+1\cdots j_1,M}$全部相等,也就是说$f_{j_2\cdots j_1,M}$是一条直线,所以可以直接算出$f_{k,M}$
总的来说,如果$f_{j,i}$是关于$j$的凸函数,难以求值却易求最值,那么可以考虑偏移$\Delta f_{j,i}$来改变最小值的位置,进而求出某个位置的值
总时间复杂度$O(n\log m)$,相当优美
#include#include #include using namespace std;typedef long long ll;typedef double du;typedef vector vi;const du eps=1e-5;template void gmax(t&a,t b){ if(a its(q[tail],u))tail--; q[++tail]=u; } } return b[M];}int a[1000010];ll inter(ll lc,ll rc,ll x){ ll lx,ly,rx,ry; lx=get(lc); ly=g[M]-lc*lx; rx=get(rc); ry=g[M]-rc*rx; if(lx!=rx) return(ly-ry)/(rx-lx)*(rx-x)+ry; else return ly;}ll take_photos(int n,int m,int k,vi r,vi c){ int i,t; ll l,_r,mid,ans; for(i=0;i t){ M++; x[M]=i; y[M]=a[i]; t=a[i]; } } x[M+1]=m+1; k=min(k,M); #define r _r l=0; r=(ll)m*m; ans=0; while(l<=r){ mid=(l+r)>>1; if(get(mid)>=k){ ans=mid; l=mid+1; }else r=mid-1; } return inter(ans+1,ans,k); #undef r}
新的一年里要继续努力啊...